LEAFY and Polar Auxin Transport Coordinately Regulate Arabidopsis Flower Development.

نویسندگان

  • Nobutoshi Yamaguchi
  • Miin-Feng Wu
  • Cara M Winter
  • Doris Wagner
چکیده

The plant specific transcription factor LEAFY (LFY) plays a pivotal role in the developmental switch to floral meristem identity in Arabidopsis. Our recent study revealed that LFY additionally acts downstream of AUXIN RESPONSE FACTOR5/MONOPTEROS to promote flower primordium initiation. LFY also promotes initiation of the floral organ and floral organ identity. To further investigate the interplay between LFY and auxin during flower development, we examined the phenotypic consequence of disrupting polar auxin transport in lfy mutants by genetic means. Plants with compromised LFY activity exhibit increased sensitivity to disruption of polar auxin transport. Compromised polar auxin transport activity in the lfy mutant background resulted in formation of fewer floral organs, abnormal gynoecium development, and fused sepals. In agreement with these observations, expression of the auxin response reporter DR5rev::GFP as well as of the direct LFY target CUP-SHAPED COTYLEDON2 were altered in lfy mutant flowers. We also uncovered reduced expression of ETTIN, a regulator of gynoecium development and a direct LFY target. Our results suggest that LFY and polar auxin transport coordinately modulate flower development by regulating genes required for elaboration of the floral organs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular framework for auxin-mediated initiation of flower primordia.

A classical role of the hormone auxin is in the formation of flowers at the periphery of the reproductive shoot apex. Mutants in regulators of polar auxin transport or in the auxin-responsive transcription factor MONOPTEROS (MP) form naked inflorescence "pins" lacking flowers. How auxin maxima and MP direct initiation of flower primordia is poorly understood. Here, we identify three genes whose...

متن کامل

The Arabidopsis IDD14, IDD15, and IDD16 Cooperatively Regulate Lateral Organ Morphogenesis and Gravitropism by Promoting Auxin Biosynthesis and Transport

The plant hormone auxin plays a critical role in regulating various aspects of plant growth and development, and the spatial accumulation of auxin within organs, which is primarily attributable to local auxin biosynthesis and polar transport, is largely responsible for lateral organ morphogenesis and the establishment of plant architecture. Here, we show that three Arabidopsis INDETERMINATE DOM...

متن کامل

Transgenic Arabidopsis with iaaH under simulated microgravity conditions

Growth and development, and auxin polar transport in Arabidopsis thaliana transformed with iaaH gene were studied under simulated microgravity conditions on a three-dimensional (3-D) clinostat. Simulated microgravity conditions on a 3-D clinostat did not affect the number of rosette leaves but promoted the growth and development (fresh weight of plant and the elongation of flower stalk) of tran...

متن کامل

Genome-wide analysis of auxin transport genes identifies the hormone responsive patterns associated with leafy head formation in Chinese cabbage

Auxin resistant 1/like aux1 (AUX/LAX), pin-formed (PIN) and ATP binding cassette subfamily B (ABCB/MDR/PGP) are three families of auxin transport genes. The development-related functions of the influx and efflux carriers have been well studied and characterized in model plants. However, there is scant information regarding the functions of auxin genes in Chinese cabbage and the responses of exo...

متن کامل

AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.

An Arabidopsis (Arabidopsis thaliana) flower consists of four types of organs arranged in a stereotypical pattern. This complex floral structure is elaborated from a small number of floral meristem cells partitioned from the shoot apical meristem during reproductive development. The positioning of floral primordia within the periphery of the shoot apical meristem depends on transport of the phy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plants

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2014